Доступно о сложном…
В работе учителя физики необходимо и очень важно показать проявление физических законов и закономерностей в окружающих нас многочисленных приборах и устройствах, а также в повседневной жизни. Открытие учениками «секретов» практического применения физических законов делает изучение предмета интересным и увлекательным, повышает мотивацию к обучению. С одним из таких «секретов» хочу вас познакомить.
Известно, что при изучении темы «Фотоэффект» в курсе физики 11 класса возникает немало трудностей с пониманием сути явления, а также с усвоением данного понятия. Мною разработана определенная технология, облегчающая усвоение темы «Фотоэффект».
В начале изучения заостряется внимание на явлении не внешнего, а внутреннего фотоэффекта. Для этого используется цифровая фотокамера. Камерой производится снимок, изображение переносится в компьютер и проецируется на экран при помощи проектора.
Все видят фотографию, после чего производится её увеличение до тех пор, пока изображение не превратится в отдельные пиксели, напоминающие изображение, но представляющие отдельные квадраты разного цвета и интенсивности.
После этого ученикам демонстрируется матрица камеры и объясняются её конструктивные особенности.
Цифровая матрица фотоаппарата представляет собой совокупность множества отдельных электронных ячеек, которые преобразуют попадающий на них свет в электрический заряд и потенциал. Каждая такая ячейка именуется пикселем. В современных фотокамерах матрицы состоят из нескольких миллионов ячеек (пикселей).
Теперь настаёт время постановки вопроса: как датчики матрицы определяют степень интенсивности падающего света, а также цвет световой волны, падающей на данную часть матрицы.
По сути в матрице камеры происходит преобразование фотонов падающего на неё света в электроны, с помощью которых создается электрический аналог картинки. Сама матрица состоит из кремниевой подложки, полупроводника, обычно p-типа (основными носителями электрического заряда являются положительные частицы – дырки). На ее поверхности размещены каналы из полупроводника n-типа (основными носителями заряда в этом случае являются электроны). Область из полупроводников двух типов проводимости образует отдельную ячейку матрицы. Таким образом, фотоны, попадая на одну из ячеек, называемую пикселем, вызывают появление в ней электрического заряда и, как следствие, – разности потенциалов. Чем больше фотонов попадет на конкретную ячейку, тем выше накопленный в ней заряд. Чем больше частота падающего света, тем большая разность потенциалов будет у ячейки. Поскольку световая картинка состоит из неравномерного количества фотонов (в одной области больше, в другой меньше), то и заряды, а также потенциалы по всей цифровой матрице фотоаппарата распределяются тоже неравномерно. Там, где попало фотонов больше, там будет больше и электрический заряд, а где меньше – заряд меньше. Чем сильнее сдвинута длина волны падающего света в фиолетовую область, тем выше потенциал. Таким образом, сформированное электронное изображение видимой в объектив картинки будет точной копией ее светового отображения, которое сформировалось при помощи объектива и свойств полупроводника «детектировать» фотоны по их интенсивности и частоте.
Все учащиеся в большей или меньшей степени сталкивались с цифровой фотографией, поэтому после подобного вступления, имеющего большую практическую направленность, ход дальнейшего объяснения явления фотоэффекта, формулировка его законов, а также использование формулы Эйнштейна происходит продуктивнее, а понимание процесса гораздо глубже.
Количество просмотров: 9876 |
Добавить комментарий